
Time of the Flight of the Gaussians:
Fast and Accurate Dynamic Time-of-Flight Radiance Fields

Runfeng Li1 Mikhail Okunev1 Zixuan Guo1 Anh Ha Duong1

Christian Richardt2 Matthew O’Toole3 James Tompkin1

1 Brown University 2 Meta Reality Labs 3 Carnegie Mellon University

Abstract
We present a method to reconstruct dynamic scenes from
monocular continuous-wave time-of-flight cameras using
raw sensor samples that is as accurate as past methods and
is 100× faster. Quickly achieving high-fidelity dynamic 3D
reconstruction from a single viewpoint is a significant chal-
lenge in computer vision. Recent 3D Gaussian splatting meth-
ods often depend on multi-view data to produce satisfactory
results and are brittle in their optimizations otherwise. In
time-of-flight radiance field reconstruction, the property of
interest—depth—is not directly optimized, causing additional
challenges. We describe how these problems have a large
and underappreciated impact upon the optimization when
using a fast primitive-based scene representation like 3D
Gaussians. Then, we incorporate two heuristics into our op-
timization to improve the accuracy of scene geometry for
under-constrained time-of-flight Gaussians. Experimental
results show that our approach produces accurate reconstruc-
tions under constrained sensing conditions, including for fast
motions like swinging baseball bats.

1. Introduction
Active illumination sensing, like continuous-wave time of
flight (C-ToF), can help us to reconstruct dynamic scenes
with just a single camera thanks to their depth estimates.
C-ToF cameras derive depth with simple reconstruction
models that assume that all surfaces are opaque and
Lambertian, which is fast but can lead to depth errors. Recent
optimization-based approaches attempt to resolve the scene
with more sophisticated physics that model the emitted light
and its reflection from an underlying transmissive 4D volume.
While too slow to optimize for practical use, so-called neural
time-of-flight radiance fields [1] are promising for scene re-
construction because, in principle, they are better at modeling
superposition effects from multi-path light transport.

Our work considers two inter-related problems in this
setting: how to make these methods faster, and how to make
their optimizations more stable once we use faster—and
brittler—reconstruction methods. By the end of this paper,
we will have comparable accuracy to existing methods while
increasing speed by 100×, so making single-camera 4D
dynamic scene reconstruction more practical (Fig. 1).

First, we explain why such an optimization might be un-
stable. For a single camera, even with active illumination, the

Ours TöRF

Train: 62 hrsTrain: 39 mins

Ours TöRF [1]
Figure 1. For time-of-flight radiance fields, when moving from
easier-to-optimize NeRFs like TöRF to fast optimization via 4DGS,
we must carefully consider ToF’s ill-posed nature for effective
indirect supervision of depth. Rendered novel views.

accurate reconstruction of depth is not sufficiently constrained
by C-ToF sensor measurements under the transmissive image
formulation model. As depth is only ever indirectly optimized,
the scene can have highly inaccurate depth but still produce
high-quality reconstructions of sensor measurements (Fig. 2).
Thus, as the problem is under-constrained, its optimization
is sensitive to the initialization and hyperparameters, and
minor tweaks can cause large differences in the output. Past
works have avoided this pernicious problem: TöRF [1] uses
additional constraints to localize the depth by both moving
the camera and by integrating RGB images. This reduces
the problem, but is not suitable for fixed (static) cameras.
F-TöRF [22] provides a more-challenging dataset with a
static camera and fast-moving objects. But, without the
additional constraints, its depth estimates can be worse than
the simple derived depth even for opaque surfaces. Some
works add priors on depth, e.g., using learned single-image
depth [15, 34] or priors over scenes [3, 31]. While pragmatic,
these approaches are tangential to our goal of attempting to
use what sensing we have to accurately measure a scene.

Second, we explain how to speed up the optimization. One
way to speed up NeRFs is to use a fast Gaussian splatting
based approach [12, 18, 32]. When there are sufficient

1

Figure 2. Fitting ToF Images ̸= Fitting Depth. Top left: Camera-
derived depth from C-ToF. Top right: Rendering a GS scene
reconstruction into C-ToF raw images samples, then deriving
depth. As this is similar to the camera-derived depth to the left, the
reconstruction objective was met. Bottom left: Rendered mean scene
depth from Gaussians, which is highly inaccurate. Bottom right:
Depth distortion error [9], which measures the Gaussian sparsity
along each ray. Gaussians are not well localized.

cameras to constrain the optimization, GS methods can
generally act as drop-in replacements for NeRFs. But, in our
setting, we have only a single camera with a dynamic scene,
and our desired property of depth is only indirectly optimized
by the reconstruction of the sensor measurements. This makes
GS methods brittle, and it is difficult to produce accurate
depth results for 4D dynamic scenes with ToF imaging. While
ToF NeRFs are slow, due to their MLP-based estimations,
they are more robust to unfavourable initializations and
hyperparameters within this under-constrained setting.

Thus, the goal is to close this gap by making fast GS-based
methods more robust in our challenging setting. Existing ap-
proaches often add losses to implicitly enforce opaque surface
assumptions, but these are counter to our goal of modeling
more complex light transport. Instead, we contribute an anal-
ysis and corresponding insight into how to better optimize the
indirect measurement of depth within time-of-flight radiance
field reconstruction, using two simple heuristics. Then, we
instantiate this insight into a dynamic scene reconstruction
method for continuous-wave time-of-flight imaging from pha-
sors or raw quads using 3D Gaussian splatting. This improves
optimization and rendering time by 100× over previous
NeRF-based methods with comparable or better accuracy.

Assumptions. We assume that the emitter is co-located
with the camera, which can cause shadowing errors on
close objects. We assume that motion can be modeled as a
piecewise linear function between timesteps; higher-order
motion models may improve results for rotational motions.
We use optical flow estimates within our optimization, which
may have errors that propagate to the final results.

2. C-ToF Imaging Principles
Following Okunev et al. [22], C-ToF cameras illuminate the
scene with a continuously-modulating amplitude of light,
usually as a sinusoid sin(2πft).1 As light returns to the
camera, it is correlated with a reference sinusoid to produce
an image with pixel intensitiesA sin(ψ + ϕ) + B. Here,A
represents the amount of light received at each pixel—the
amplitude—andB represents the bias and depends upon the
ambient illumination. Phase ψ captures the time that light
is in flight. There is also a programmable temporal shift of
the reference signal, ϕ.A,B, and ψ are three unknowns, and
so we need at least three intensity measurements captured
at different offsets ϕ. Many cameras use four offsets for
robustness, where ϕ ∈ {0, π2 , π,

3π
2 }, and the camera

produces a quartet of raw frames Qϕ = {A sin(ψ+ϕ)+B}.
Given frames Qϕ, a typical C-ToF camera recovers the

phase ψ and computes distance by multiplying time traveled
with the speed of light c [8]:

dToF =
c

4πf
ψ where ψ = arctan

(
Q0 −Qπ

Qπ
2
−Q 3π

2

)
, (1)

and where arctan

(
Q0 −Qπ

Qπ
2
−Q 3π

2

)
=

arctan

(
A sin(ψ) +B − (−A sin(ψ) +B)

A cos(ψ) +B − (−A cos(ψ) +B)

)
=

= arctan (tan(ψ)) = ψ.

We can represent the C-ToF signal as a complex phasor
a ·W (d) = a · exp (i 2πdfc) = (Q0 −Qπ) + i(Qπ

2
−Q 3π

2
),

where a = 2A and d is a length of the total path that the
light had to travel (thus, d = 2 · dToF) [7]. Then, the phase
ψ = ∠W (d) and Qa = A = 1

2 |a · W (d)|. a can also be
further written as a product of the emitter signal se and a total
reflectivity of the surface in a certain direction rk, a = se · rk.

We can compute the amplitude of the returned light as:

QA = A = 1
2

√
(Q0 −Qπ)2 + (Qπ

2
−Q 3π

2
)2. (2)

C-ToF cameras can only measure depth unambiguously
up to du = c

2f since all depths over this range will map back
to [0, du] due to sinusoidal periodicity. Real cameras usually
have du in the range of 5–10 m. Second, as we must capture
four frames, achieving 30 Hz depth output needs raw frame
capture at 120 Hz, and deriving depth in this way assumes
that the quartet Qϕ was captured simultaneously. This means
that any motion within the quartet will cause depth errors as
the light arriving at a pixel will come from different world
points. Third, this model assumes that light reflects back to
the sensor from one surface only within a vacuum, when in
truth it travels in complex paths.

1We can more accurately model light intensity with a non-negative signal
1
2
sin(2πft) + 1

2
; for clarity, we choose the simpler model.

2

3. C-ToF GS Image Formation
Next, we explain how we extend Gaussian splatting methods
for dynamic scene time-of-flight radiance field reconstruction.
We assume that the reader is familiar with both Kerbl et al.
[12] and monocular 4D extensions for single-camera
dynamic scenes, e.g., Yang et al. [32] or Liang et al. [18].
GS image formation model. Briefly, a scene is recon-
structed by optimizing a large set of anisotropic Gaussians
Gk ∈ G. Each is characterized by its center 3D position
xk ∈ R3, covariance matrix Σk describing its 3D scale
and rotation, opacity ok ∈ [0, 1], and view-dependent
color parameterized by 16 spherical harmonic coefficients
ck ∈ [0, 1]3. Given a rasterizer to form a Gaussian as its 2D
projection G2D

k on the sensor, the color at a pixel in an output
image is a weighted sum of contributing Gaussians:

c(x) = cbgTN +

N∑
k=1

ckokG2D
k (x) Tk,

where Tk =

k−1∏
l=1

(1− olG2D
l (x)) . (3)

As we will discuss it later on, we explicitly include the
background signal intensity beyond the scene far bounds as
cbg with the final transmittance at that bound as TN .
C-ToF GS phasor formation model. Next, we adapt
Eq. (3) to model ToF signals as phasors, following the image
formation model from Attal et al. [1]. Phasor imaging [7]
assumes that all Qϕ are captured simultaneously. The phasor
at pixel x is given by:

p(x) = pbgTN +

N∑
i=1

serk
d2k

W (dk) ok G2D
k (x)T 2

k . (4)

We note the differences from left to right. For the infrared ToF
signal, rather than representing the scene radiance towards the
camera ck directly as in Eq. (3), we must describe the emitted
and returned light. We model the returned light as the product
of the source intensity se and surface reflectivity rk modeled
with 16 spherical harmonics coefficients, as one of the Gaus-
sian properties. This light undergoes inverse-square falloff
1/d2k, where dk is the distance from each Gaussian center to
the camera’s optical center. Then,W (dk) = exp(iψk) mod-
els the light path importance, where the phase shift between
the emitted and reflected light is ψk = 4πdkf

c , where f is the
ToF camera modulation frequency, and where c is the speed
of light. Finally, transmission Tk =

∏k−1
l=1 (1 − olG2D

l (x))
is now squared to represent light traveling both to and from
the scene through the radiance field.
C-ToF GS raw image formation model. Rather than
a single phasor assumed to be captured at a single time,
Okunev et al. [22] expand this model to consider that the
Qϕ set of raw images are captured over time. By replacing
the phasorW (dk) with raw sample quads modulated using

ϕ(dk) : {sin (ψk), cos (ψk),− sin (ψk),− cos (ψk)}, we
transform the GS phasor formation model into:

q(x) = qbgTN +

N∑
i=1

serk
d2k

ϕ(dk) ok G2D
k (x)T 2

k . (5)

Then, by finding correspondence across time between the
raw quads, we can resolve depth even though the scene is
moving by warping the quads to the same timestep. Within
an optimization, Okunev et al. solve for this correspondence
while also solving for the scene’s geometry.

3.1. Where the Problems Lie
ToF samples are not depth. Unlike other problem settings
that directly optimize the property of interest, e.g., color
images for novel-view synthesis or depth maps for depth
estimation [5, 12, 15], our challenge is that the optimized
property—time-of-flight measurements, either as phasors
(Eq. (4)) or as raw quads (Eq. (5))—are not the same as the
property of interest (depth). Suppose we compute the depth
of the scene as the mean Gaussian depth, as given by:

d(x) =

N∑
k=1

dk ok G2D
k (x)Tk. (6)

Without additional constraints or guidance, fitting Eq. (4) vol-
umetrically does not guarantee consistency with the depth
rendered by Eq. (6). For example, when multiple density
peaks exist along a ray but only a single surface exists, the ren-
dered mean depth will diverge from the depth derived from the
rendered phasor even if the phasor is accurately reconstructed,
as shown in Fig. 2. This discrepancy arises because the sine
and cosine functions in ϕ(dk) oscillate between convex and
concave regions, preventing equality in the finite form of
Jensen’s inequality. Only when all Gaussians are clustered at
the same z-position along each ray does this depth gap reduce.
Previous approaches. Past works have integrated additional
multi-view constraints from moving cameras or extra RGB
input [1] to alleviate it. Of course, this works with a Gaussian
renderer too, but such an approach avoids the problem rather
than finds a better solution to it. Further, experimentally,
previous NeRF-based ToF radiance field methods [1, 22]
exhibit this gap to a lesser extent, possibly due to the MLP’s
inherent bias towards low-entropy (simple) solutions: a single
high-density spike (a surface) has lower entropy along the
ray than many locations with mid- or low-density values.

In contrast, 4DGS has no such inherent bias; Gaussians
can be positioned arbitrarily along the ray to fit the target,
which harms depth accuracy. Supposing that we start from
randomly-initialized Gaussians, the flexibility in Gaussian
reflectivities along each ray allows the optimizer to fit
ToF data by forming high-entropy, multi-peak density
distributions. While this approach still causes a rendering of
the scene to match the ToF data, the scene diverges from our
goal of producing accurate mean depth maps.

3

Rendered Signals

Time-of-Flight
Camera

Optional
RGB Camera

Raw Quads
Input Over Time

ToF 𝑄𝑄0 ToF 𝑄𝑄𝜋𝜋
2

𝑖𝑖2 − 𝑗𝑗 𝒙𝒙𝑖𝑖1 +
(𝑗𝑗 − 𝑖𝑖1)𝒙𝒙𝑖𝑖2

Warm Up

Optimization

Canonical
Gaussians

MLP

𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝑖𝑖1, 𝑖𝑖2

Deformed
Gaussians

𝒙𝒙
Σ
𝑜𝑜

𝒄𝒄

𝒓𝒓

+

+

Color
Splat

ToF
Splat

Random
Initial Points

Operation Flow Gradient Flow

ToF Type 2
ℒ𝒒𝒒

ℒ𝒄𝒄

ToF 𝑄𝑄𝜋𝜋 ToF 𝑄𝑄3𝜋𝜋
2

Figure 3. Pipeline overview. Left: We capture input raw quads (or phasors, not shown) from a time-of-flight camera with optional color
camera. Right to Left: Starting from randomly initialized Gaussians, the warm-up stage estimates canonical scene geometry using ToF signals.
Given time t and the canonical Gaussian positions, the MLP deforms the Gaussians using the offsets (δx). These deformed Gaussians are
then used to render the ToF and color images.

Current approaches in RGB scene reconstruction—even in
more-constrained multi-view settings—use a depth distortion
loss to help push Gaussians towards a surface [9]:

DD(x) =

N∑
k=1

N∑
l=1

ωkωl∥dk − dl∥2, (7)

where ωk = ok G2D
k (x)Tk. This implicitly enforces an

opaque surface assumption, and often the scenes recon-
structed by these methods do conform to this assumption.
However, this implicit assumption reduces our ability
to model complex light transport. If we only wanted to
reconstruct opaque surfaces, we would just derive depth from
ToF in a closed form. The loss tends to produce oversmoothed
depth reconstructions; see supplemental for ablations.
Heuristic 1: Occupancy bias. To address this problem, we
note that, within the space of reconstruction parameters and
mechanisms when trying to reconstruct scenes (reflectivity,
position, opacity, densification), ‘where things are’ or
‘occupancy’ is the primary variance, and so reflectivity
changes should be rarer than occupancy changes (position,
opacity, densification). Given the choice, we would rather
move points around, make new density, or remove density
than change the proportion of light that is returned. To
achieve this, we can decrease the learning rate within the
optimization for scene reflectivity 10×, which increases the
effect of position and opacity variation instead. While simple,
this adjustment better encourages Gaussians to conforms
to the true scene structure from the outset without forcing
Gaussians to be close to each other as in Eq. (7).
Heuristic 2: Low-reflectivity bias. The initial reflectivity
plays a crucial role in the optimization result, particularly
for low-reflectivity regions of the scene. Assume initial re-
flectivity values are high (e.g., 0.5). Then, with an occupancy
bias, due to the inverse-square falloff term, we encourage
Gaussians for low-reflectivity regions to be incorrectly
placed far away from the camera. Before the reflectivity of
these far Gaussians can be corrected, and as Gaussians have

spatial extent once splatted, other closer splat-overlapping
Gaussians interfere to prevent the reflectivity correction. This
leads to multiple opacity peaks.

Now let us assume a lower initial reflectivity (0.01− 0.1).
This enables Gaussians for low-reflectivity regions to be
placed more correctly because the lower initialization
provides a closer starting fit to the true scene. With an
occupancy bias, then Gaussians for high-reflectivity regions
will be placed closer to the camera during initial optimization
stages also due to the inverse-square falloff term. As they
occlude the scene, they are less likely to interfere with other
Gaussians, and so have more iterations to optimize their
reflectivities and positions to reach the true depth.

Empirically, combining occupancy and low-reflectivity
biases is effective for both low and high reflectivity scene
regions in our test sequences, whereas only using an occu-
pancy bias (no low-reflectivity bias) harms low-reflectivity
regions. While simple, both approaches are more effective
than Eq. (7) without overly-constraining the final result.

4. Pipeline

As input, our system takes a video sequence of raw quartet
ToF images and an optional color sequence (see Fig. 3). Our
approach equivalently works with ToF phasors. We assume
accurate camera poses, which align the scene scale with the
ToF measurements. For our 4DGS approach [32], we use an
MLP that takes time t and Gaussian positions x as input and
outputs Gaussian 3D position offsets δx. Thus, Gaussians
are implicitly deformed from a canonical space.

Local linearity within each four raw frames is critical
for fitting as the quartet is asynchronously captured. Let us
consider an image in a quartet to be at an ‘integer’ timestep
i, and its matching-amplitude raw quad in four ticks time to
be at i+ 1. Then we only deform Gaussians to integer time
steps but ensure local linearity at intermediate fractional time
steps j by linearly interpolating Gaussian positions from the

4

two nearest integer timesteps i1 and i2:

xj = (i2 − j)xi1 + (j − i1)xi2 . (8)

This is functionally equivalent to the phase-aware reprojec-
tion loss from Okunev et al. [22].
Optical flow weak supervision. To help correspond fast
motions, we also weakly supervise the forward and backward
3D motion offsets of Gaussians against estimated optical flow
from RAFT [27] with an L2 loss Lf. Optical flow is projected
from the estimated 3D position offsets, where the forward
flow is computed as (similarly for backward flow):

f(x) = Πi

(
sg(Dx) +

N∑
k=1

∆xkokG2D
k (x)Tk

)
, (9)

where ∆xk = MLP(x, i+ 1)− MLP(x, i) is the Gaussian
scene flow, Dx is the back-projected 3D point from the
rendered mean depth, sg stops gradient computation, and Πi

is the camera’s perspective projection at time i.
Total loss. We combine three objectives:

L = αLq + Lc + βLf, (10)

where Lq is the raw quad reconstruction loss and Lc is the
optional color reconstruction loss. Following Kerbl et al. [12],
both use L1 and SSIM terms.
Initialization. We initialize Gaussians randomly within the
camera frustum, bounded by near and far planes, and with a
reflectivity of 0.1. Unlike other dynamic GS models, our Gaus-
sian positions are in real-world units, potentially with large
values. To ease optimization, we rescale input coordinates to
the MLP (only) using the unambiguous depth range, ensuring
most values lie within [-1, 1]. Further, in an initial warm-up
stage for 2K iterations, we assume that the scene is static. This
helps to place many of the Gaussians into useful positions.
Random background. For sensitive low-reflectivity scene
areas, a low background contribution qbg can lead to errors:
Gaussians should be placed on a surface to contribute, but the
background is already mostly sufficient to reproduce the ToF
signal. This creates only low-contributing Gaussians. To fix
this, we randomly change the background signal (uniformly
between -1 and 1) at each training iteration.
MLP. The deformation MLP consists of 8 layers with
256 neurons each, using positional encoding frequencies of
Lx = 10 and Lt = 10. MLP biases are initialized to zero,
and weights are initialized with Xavier normal initialization
in PyTorch, except for the final linear layer, which maps the
final 256 features to the delta position. This layer’s weights
are initialized from a normal distribution with a standard
deviation of 10−5 to ensure stable training by starting
Gaussian deformations from small δx values.
Hyperparameters. In the loss, we setα = 5 (1 for synthetic
scenes) and β = 0.0008. We use the Adam optimizer with
β = (0.9, 0.999) and ϵ = 10−15. We initialize reflectivity
as 0.1 and use a reflectivity learning rate of γr = 0.00016.

The MLP learning rate starts at γMLP = 0.0008 and decays
exponentially to 1.6× 10−6 over 60K iterations.
Implementation Details. Our code is based on Kerbl et al.
[12], with custom CUDA implementations for forward and
backward raw ToF image rasterization. Details on ToF Gaus-
sian gradient calculations are provided in the supplemental
material. Gaussians are rendered twice using a differentiable
rasterizer: once for the ToF view to compute the quad loss,
and once for the RGB view to compute the color loss.

5. Experiments
TöRF Dataset. The dataset contains five real-world indoor
dynamic monocular sequences (Photocopier, Cupboard,
DeskBox, PhoneBooth, and StudyBook). All scenes have raw
ToF images and RGB images with 12 bits of information. ToF
signals were captured with a Texas Instruments OPT8241 sen-
sor (320×240 at 30 fps) with 5 m unambiguous depth range.
We use the calibrated camera poses optimized by retraining
the TöRF model. The cameras are moving, which provides
additional multi-view constraints, and scene motion is slow.
F-TöRF Dataset. The dataset contains five sequences from
the dataset: Pillow, Baseball, JumpingJacks, Target, and Fan.
Again, these scenes were captured with a Texas Instruments
OPT8241 sensor (320×240 at 30 fps) with 5 m unambiguous
depth range. The scenes are significantly more challenging:
they contain no camera motion and they contain fast-moving
objects such as falling pillows and swinging baseball bats.
F-TöRF Synthetic Dataset. We also use their set of
seven didactic scenes. These are generated in Blender using
physically-based path tracer PBRT [23] adapted for ToF
emission, at a resolution of 320×240. The scenes show cubes
undergoing axial, lateral, and rotational motions to induce
varying disparities, with occlusion, both with and without
texture, or with chairs to show thin features. The scenes are
strictly monocular without camera motion. The fastest scenes
(3 Cubes Speed Test, 3 Chairs Speed Test, Arcing Cube, Axial
Speed Test) have large disparity: maximally up to 30 pixels
across raw frames, and often 9–18 pixels (Sliding Cube,
Occluded Cube, Orthogonal Speed Test). Three challenge
scenes test large axial motion (Arcing Cube, Axial Speed Test,
Orthogonal Speed Test).
Metrics. For synthetic scenes, we have ground-truth depth
and so can measure MSE. For real-world scenes, we only
evaluate qualitatively. We report model training times for a
single NVIDIA 3090 GPU.
Baselines. We compare to ToF NeRFs using phasors (TöRF)
and corresponded raw quads (F-TöRF). For a 4DGS compari-
son, we compare to DeformableGS [32] when it is given addi-
tional depth input derived from C-ToF imaging as in Eq. (1).
We also include a 2D baseline that uses softmax splatting [21]
and RAFT optical flow to warp raw quads to new timesteps.

5.1. Results
Computation Time. As expected, our approach is sig-
nificantly faster than TöRF [1] (60 hours) or F-TöRF [22]

5

Table 1. Depth error on the F-TöRF synthetic dataset. Each number is a depth MSE×100. ‘d’ refers to a standard volume-integrated
depth from Eq. (6). ‘dToF’ is a depth, derived from the reconstructed ToF signal using Eq. (1). Bold marks best result for both d and dToF

Sliding Cube Occluded Cube Axial ST 3 Cubes ST 3 Chairs ST Arcing Cube Ortho. ST

C-ToF 0.096 0.130 2.068 3.131 0.787 36.768 41.931
2D Flow 0.018 0.088 0.662 0.916 0.229 1.678 19.805

F-TöRF dToF 0.023 0.114 0.251 0.501 0.324 0.470 27.488
Ours dToF 0.005 0.062 0.123 0.281 0.639 1.060 14.933

TöRF d 0.349 0.388 1.143 2.363 0.956 6.278 22.855
F-TöRF d 0.440 0.647 0.938 1.390 0.855 1.256 7.527
Ours d 0.037 0.369 0.525 0.641 1.023 1.023 22.772

GT C-ToF 2D Flowed TöRF [1] F-TöRF [22] DeformableGS [32] Ours

O
cc

lu
de

d
C

ub
e

A
rc

in
g

C
ub

e
A

xi
al

ST
3

C
ha

ir
sS

T

Figure 4. Our approach is competitive or better in terms of accuracy against the state of the art on synthetic scenes, while being two orders
of magnitude faster. We use the synthetic dataset from F-TöRF to demonstrate that our model produces comparable quality reconstructions.
All images show rendered volumetric depth d. SOTA NeRF model F-TöRF produces similar results to ours while being significantly slower.
SOTA 4DGS model ‘DeformableGS’ uses only additional depth information without a physically-based ToF model, and fails to reconstruct
the scene well. Baseline ‘2D Flowed’ model is fast but cannot account for axial motion as well as our model, producing artifacts.

(72 hours) at 40–60 minutes for a corresponded 4D scene
reconstruction. Rendering is real time at 100+ Hz.

Quantitative Results. It is well known that GS methods
typically represent a tradeoff between quality and speed,
with NeRF-based methods providing higher quality. Despite
that, our method is competitive in terms of depth error
(Tab. 1). For the reconstructed scene depth d, we show
improved results on five out of seven synthetic scenes over
all baselines and produce competitive results on the rest.
Our predicted scene density is ‘denser’ than that of F-TöRF
(Arcing Cube), as seen by the reduced gap between d and the
depth derived by Eq. (1) dToF from the reconstructed sensor

images. Thin structures (as in 3 Chairs Speed Test) seem
harder to reconstruct as they require a precise configuration
of anisotropic Gaussians. Large-scale nonlinear motions
(Arcing Cube) are also challenging to optimize under a
canonical deformation model. Orthogonal Speed Test suffers
from a local optima on one of the cubes, which biases the
error metric upwards (see the supplemental videos).

Qualitative Results. On the easier TöRF dataset that has
color and a moving camera (Fig. 6), we show that depth
supervision is still critical for 4DGS: DeformableGS without
the added depth fails to reconstruct the scene well. With
naı̈ve depth, DeformableGS improves substantially, but is

6

C-ToF 2D Flowed TöRF [1] F-TöRF [22] DeformableGS [32] Ours
B

as
eb

al
l

P
ill

ow
Ta

rg
et

Fa
n

Figure 5. F-TöRF real scenes; rendered scene depth d. As it models temporal dynamics and constrains geometry appropriately during
training, our model produces comparable quality reconstructions with F-TöRF while being consistently better than other baselines. Our method
tends to reconstruct static geometry better (floor in JumpingJacks). Fan scene presents a significant challenge as the motion is nonlinear—our
canonical field struggles to track this geometry over time. F-TöRF can approximate this scene better due to the lack of such a global constraint.
Depth wrapping effects in the background occur in some scenes; these represent an ambiguity that is out of our scope for this work.

still inferior to our physically-based ToF supervision. Our
method is comparable to TöRF, with some areas better for
ours than TöRF (see plaque in StudyBook).

The challenging F-TöRF dataset (Figs. 4 and 5) reveals
that our method is comparable with F-TöRF, and only
these two methods can correct for fast motion artifacts.
DeformableGS often completely fails to reconstruct a
fast-moving object (Arcing Cube, 3 Chairs Speed Test), and
2D Flowed cannot handle axial motion—something that our
method can do. While faster, our method also often produces
better static region reconstructions compared to F-TöRF
(floor in JumpingJacks, Target, cart in Baseball). But, similar
to the quantitative analysis, our method somewhat struggles
with thin structures in 3 Chairs Speed Test and can produce
depth that is less sharp than F-TöRF. Finally, no approach
can accurately reconstruct spinning fan blades in Fan.

6. Discussion
Limitations. Depth wrapping. Several of our reconstruc-
tions (JumpingJacks, Target, Pillow) contain depth wrapping
in the background, which is a typical C-ToF artifact. Although
some baselines happen to avoid this issue on the surface, we

argue that this problem is fundamentally ill-posed for a static
camera, and predictions heavily depend on the optimization
biases since a unique solution is unattainable.

Nonlinear motion. Our model can struggle when the
motion is strongly nonlinear (as in Fan and to a smaller
extent in Arcing Cube). This can be in principle resolved
with a more flexible model that allows nonlinear trajectories,
although it will likely make the problem even more ill-posed
and require stronger regularizations.

Sharp reconstruction. Our volume reconstruction can
be visually less sharp that NeRF-based methods around the
edges, despite having smaller depth error. This is likely a
consequence of spatial smoothness that Gaussians exhibit.
More complex surface representations might help [6, 9].
Conclusion. We present a Gaussian splatting approach for
fast reconstruction and rendering of dynamic monocular se-
quences with asynchronous ToF exposures. Adapting 4DGS
to this setting required us to consider how the underlying
optimization affects the indirect optimization of depth, and
devise two heuristics that better condition the optimization.
These successfully avoid overfitting across a set of synthetic
and real-world scenes. In sum, our method is 100× faster than

7

Input Ours TöRF [1] DeformableGS [32] DeformableGS (–depth)

C
up

bo
ar

d
St

ud
yB

oo
k

Figure 6. Our approach is competitive with other baselines on TöRF dataset. Comparison of our method with TöRF and DeformableGS
(with and without C-ToF depth prior). Images are novel views of rendered volumetric depth d and color, rendered along a spiral path around the
training camera. Our approach demonstrates same or better depth reconstruction for both static and dynamic objects, particularly in dynamic
regions with limited multi-view signals. Our method mitigates overfitting to noisy raw depth measurements in the StudyBook scene.

baselines, and produces comparable or better reconstructions
of fast-moving objects even with a static monocular camera.

7. Related Works
Accurately reconstructing geometry is important for many
applications, such as in measurement or physics simulation
[30]. When the capturing setup is equipped with a depth sen-
sor, high-quality reconstruction becomes possible even with
a small camera baseline. In TöRF [1], a NeRF model takes
advantage of a C-ToF camera and uses phasors to optimize
the geometry of a dynamic scene. In F-TöRF [22] the model
works directly with raw C-ToF camera outputs and recovers
motion in addition to geometry, while avoiding typical C-ToF
camera motion artifacts. Another work [25] uses a structured
light camera in a static setting not only to recover the geom-
etry, but also normals and direct and indirect illumination.
PlatoNeRF [13] recovers scene geometry from a single view
using two-bounce signals captured by a single-photon lidar.
However, each takes many hours to optimize a single scene.
Our work adapts such techniques to fast Gaussian splatting.
Dynamic Gaussian Splatting. Since 3DGS [12] was
introduced, it has been explored and adapted widely for
reconstruction due to its efficiency. Extending 3DGS, a

plethora of works on dynamic Gaussian splatting emerged
recently, differing in their motion representations, constraints
and optimization approaches. In Dynamic 3D Gaussians [20],
the model assumes a freeform rotation and translation of
Gaussians between consecutive time steps and iteratively op-
timizes the scene with rigidity constraints, but it heavily relies
on multi-view input. Some works [18, 29, 32] map each time
moment to a canonical space to model the dynamic content.
Another approach to model the motion is a global trajectory
reconstruction using Fourier, polynomial or a learned basis
approximation [11, 14, 19, 28]. In Dynamic Gaussian Mar-
bles [26], isotropic Gaussians are equipped with trajectories
are learned through a divide-and-conquer optimization and by
using a pretrained single-image depth prior. A local approach
is taken in Spacetime Gaussians [16]: the temporal opacity of
Gaussians is modeled through radial basis functions making
them appearing and disappearing when needed. Finally,
4D Gaussian splatting [33] avoids using an explicit motion
model at all by using 4D Gaussians, where the motion is a
byproduct of time-conditioned projection to 3D space.
Gaussian splatting for other input domains. Gaussian
splatting models are not restricted to only reconstruct from
RGB color inputs. The method can be adapted in a non-RGB

8

setting as well. Some works [2, 4, 10, 17, 24] focus on
extending 3DGS framework to HDR, X-ray, sonar, or thermal
images. However, without a sufficient variation in camera
poses, high quality reconstruction remains a challenge. To
address that, some methods [5] integrate an additional depth
input to improve the quality. However, these methods all rely
on the quality of the monocular depth supervision. Within an
under-constrained and more brittle optimization than NeRFs,
we contribute a way to effectively use Gaussian splatting
with time-of-flight imaging.

References
[1] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim,

Christian Richardt, James Tompkin, and Matthew O’Toole.
TöRF: Time-of-flight radiance fields for dynamic scene view
synthesis. In NeurIPS, 2021. 1, 3, 5, 6, 7, 8, 14, 15, 16

[2] Yuanhao Cai, Yixun Liang, Jiahao Wang, Angtian Wang,
Yulun Zhang, Xiaokang Yang, Zongwei Zhou, and Alan Yuille.
Radiative Gaussian splatting for efficient X-ray novel view
synthesis. In ECCV, 2024. 9

[3] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and
Vincent Sitzmann. pixelSplat: 3D Gaussian splats from image
pairs for scalable generalizable 3D reconstruction. In CVPR,
2024. 1

[4] Qian Chen, Shihao Shu, and Xiangzhi Bai. Thermal3d-gs:
Physics-induced 3d gaussians for thermal infrared novel-view
synthesis. In European Conference on Computer Vision, pages
253–269. Springer, 2024. 9

[5] Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee.
Depth-regularized optimization for 3D Gaussian splatting in
few-shot images. In CVPR, pages 811–820, 2024. 3, 9

[6] Antoine Guédon and Vincent Lepetit. SuGaR: Surface-aligned
gaussian splatting for efficient 3D mesh reconstruction and
high-quality mesh rendering. In CVPR, 2024. 7

[7] Mohit Gupta, Shree K Nayar, Matthias B Hullin, and Jaime
Martin. Phasor imaging: A generalization of correlation-based
time-of-flight imaging. ACM Transactions on Graphics (ToG),
34(5):1–18, 2015. 2, 3

[8] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud.
Time-of-Flight Cameras: Principles, Methods and Applica-
tions. Springer Publishing Company, Incorporated, 2012. 2

[9] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2D Gaussian splatting for geometrically
accurate radiance fields. In SIGGRAPH, 2024. 2, 4, 7, 11

[10] Xin Jin, Pengyi Jiao, Zheng-Peng Duan, Xingchao Yang,
Chun-Le Guo, Bo Ren, and Chongyi Li. Lighting every
darkness with 3DGS: Fast training and real-time rendering
for HDR view synthesis. arXiv:2406.06216, 2024. 9

[11] Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. An ef-
ficient 3D Gaussian representation for monocular/multi-view
dynamic scenes. arXiv:2311.12897, 2023. 8

[12] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1, 3, 5, 8, 11

[13] Tzofi Klinghoffer, Xiaoyu Xiang, Siddharth Somasundaram,
Yuchen Fan, Christian Richardt, Ramesh Raskar, and Rakesh
Ranjan. PlatoNeRF: 3D reconstruction in Plato’s cave via
single-view two-bounce lidar. In CVPR, 2024. 8

[14] Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. DynMF:
Neural motion factorization for real-time dynamic view
synthesis with 3D Gaussian splatting. In ECCV, 2024. 8

[15] Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun
Zhou, and Lin Gu. DNGaussian: Optimizing sparse-view 3D
Gaussian radiance fields with global-local depth normalization.
In CVPR, 2024. 1, 3

[16] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime
Gaussian feature splatting for real-time dynamic view
synthesis. In CVPR, 2024. 8

[17] Zhihao Li, Yufei Wang, Alex Kot, and Bihan Wen. From chaos
to clarity: 3DGS in the dark. arXiv:2406.08300, 2024. 9

[18] Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc,
Douglas Lanman, James Tompkin, and Lei Xiao. GauFRe:
Gaussian deformation fields for real-time dynamic novel view
synthesis. arXiv:2312.11458, 2023. 1, 3, 8

[19] Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-
Flow: 4D reconstruction with dynamic 3D Gaussian particle.
In CVPR, 2023. 8

[20] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva
Ramanan. Dynamic 3D Gaussians: Tracking by persistent
dynamic view synthesis. In 3DV, 2024. 8

[21] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, 2020. 5

[22] Mikhail Okunev, Marc Mapeke, Benjamin Attal, Christian
Richardt, Matthew O’Toole, and James Tompkin. Flowed time
of flight radiance fields. In ECCV, 2024. 1, 2, 3, 5, 6, 7, 8, 14, 15

[23] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
Based Rendering: From Theory to Implementation. Elsevier,
3rd edition, 2016. 5

[24] Ziyuan Qu, Omkar Vengurlekar, Mohamad Qadri, Kevin
Zhang, Michael Kaess, Christopher Metzler, Suren Jayasuriya,
and Adithya Pediredla. Z-splat: Z-axis Gaussian splatting for
camera-sonar fusion. arXiv:2404.04687, 2024. 9

[25] Aarrushi Shandilya, Benjamin Attal, Christian Richardt,
James Tompkin, and Matthew O’Toole. Neural fields for
structured lighting. In ICCV, 2023. 8

[26] Colton Stearns, Adam W Harley, Mikaela Uy, Florian Dubost,
Federico Tombari, Gordon Wetzstein, and Leonidas Guibas.
Dynamic Gaussian marbles for novel view synthesis of casual
monocular videos. In SIGGRAPH Asia Conference Papers,
2024. 8

[27] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 5

[28] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi
Li, and Angjoo Kanazawa. Shape of motion: 4D reconstruction
from a single video. arXiv:2407.13764, 2024. 8

[29] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4D Gaussian splatting for real-time dynamic scene rendering.
In CVPR, 2024. 8

[30] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao
Feng, Yin Yang, and Chenfanfu Jiang. PhysGaussian:
Physics-integrated 3D Gaussians for generative dynamics. In
CVPR, 2024. 8

[31] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen,
Ceyuan Yang, Sida Peng, Yujun Shen, and Gordon Wetzstein.
GRM: Large Gaussian reconstruction model for efficient 3D
reconstruction and generation, 2024. arXiv:2403.14621. 1

9

[32] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3D Gaussians for
high-fidelity monocular dynamic scene reconstruction. In
CVPR, 2024. 1, 3, 4, 5, 6, 7, 8, 14, 15, 16

[33] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time
photorealistic dynamic scene representation and rendering
with 4D Gaussian splatting. In ICLR, 2024. 8

[34] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.
FSGS: Real-time few-shot view synthesis using Gaussian
splatting. In ECCV, 2024. 1

10

Time of the Flight of the Gaussians:
Fast and Accurate Dynamic Time-of-Flight Radiance Fields

Supplementary Material

8. Supplemental Video + Full Figures
We have included a supplemental video showing all dataset
sequences plus two ablation sequences. Further, we include
full sequence qualitative figures for all three datasets at the
back of this supplemental material; this reproduces some
results from the main paper but groups and includes all results
for completeness.

9. Ablations
We show quantitative (Tab. 2) ablations on F-TöRF synthetic
scenes and also qualitative ablation results on F-TöRF real-
world and synthetic scenes (Fig. 7). “No bias” refers to no
consideration of either of our heuristics. “DD” means adding
the depth distortion loss [9], and “H1” and “H2” means our
control of the optimization using our occupancy bias (H1)
and low initial reflectivity bias (H2). For result variants, ‘d’
refers to the mean depth from Eq. (6), and ‘dToF’ refers to the
depth derived from the reconstructed quads using Eq. (1).

10. ToF Gradient Computation Details
We briefly explain the opacity gradient computation for our
ToF image formation model, which is less trivial compared
to other gradients computed via simple chain rules. Let L
denote the loss function, and αk = okG2D

k (x) the opacity
term of the k-th Gaussian. Using the chain rule:

∂L

∂αk
=

∂L

∂c(x)

∂c(x)

∂αk
, (S11)

the term ∂c(x)
∂αk

is computed recursively in the original 3D
Gaussian Splatting (3DGS) method [12]:

∂c(x)

∂αk
= Tk(ck − acck), (S12)

acck =

{
αk+1ck+1 + (1− αk+1)acck+1, k < N,

0, k = N,

where Tk is the accumulated transmittance, ck is the
Gaussian’s color, and acck aggregates contributions of later
Gaussians.

In our model, this computation extends to ToF-specific
signals like phasor or quad pixels (p(x), q(x)) as described
in Eq. (5) of the main paper. We take q(x)) as an example,
the corresponding recursion becomes to:

∂q(x)

∂αk
= T 2

k (qk + 2(αk − 1)accqk), (S13)

accqk =

{
αk+1qk+1 + (1− αk+1)

2accqk+1, k < N,

0, k = N.

Here, qk represents the quad contribution of the k-th
Gaussian, and accqk accumulates later quad contributions.

11

Table 2. Ablation depth error on the F-TöRF synthetic dataset. Each number is a depth MSE×100. Bold marks the smallest result for each of
d and dToF. On average, our approach is reliably more accurate without any catastrophic failures, though scene specific variations exist. Sliding
Cube is too simple to induce large differences. Ortho. ST is the only sequence with large low reflectivity areas, and we see the advantage of our low
initial reflectivity bias (H2) in the scene’s reconstructed d. Using both heuristics H1, H2 plus the depth distortion (DD) loss theoretically should
reduce the gap between d and dToF, but in practice, because of the spatial extent of the Gaussians, this usually led to oversmooth depth, worse
thin structures, and is sometimes unstable because of the existence of large Gaussians representing large homogeneous textureless areas (Fig. 7).

Mean Sliding Cube Occ. Cube Axial ST 3 Cubes ST 3 Chairs ST Arcing Cube Ortho. ST

d
To

F

No bias 144.134 0.013 13.227 0.286 1.152 0.885 5.884 987.492
+DD 146.189 0.119 11.422 5.413 7.289 1.224 13.415 984.440
+H1 3.641 0.017 0.024 0.206 0.916 0.605 1.113 22.610
+H1 +H2 (ours) 3.360 0.008 0.073 0.154 0.294 0.650 1.526 20.818
+H1 +H2 +DD 255.717 0.012 148.578 0.422 1.010 0.895 1537.952 101.148

d

No bias 365.686 0.049 15.604 55.834 24.892 1.482 4.456 2457.487
+DD 274.316 0.172 11.675 5.922 7.805 1.421 13.067 1880.148
+H1 44.520 0.058 0.310 0.726 1.610 1.011 1.025 306.898
+H1 +H2 (ours) 5.824 0.033 0.348 0.730 1.059 1.072 1.479 36.048
+H1 +H2 +DD 310.564 0.026 147.856 0.787 1.362 1.106 1537.840 484.997

12

Input No bias +DD +H1 +H1 +H2 (ours) +H1 +H2 +DD
O

rt
ho

.S
T

d
To

F
d

3
C

ha
ir

sS
T

d
To

F
d

A
rc

in
g

C
ub

e
d

To
F

d
P

ill
ow

d
To

F
d

B
as

eb
al

l
d

To
F

d

Figure 7. Ablations. In the first column, the even rows show the reflectivity map, which is computed as input amplitude multiplied with
the square of input depth from ToF (light falloff), and can be understood as the expected of Gaussian reflectivity at the corresponding surface.
For visualization, the map is clipped to the range [0, 1], where overexposed areas only indicate high target reflectivity. No bias led to arbitrary
number of density peaks even for opaque surfaces, thus inaccurate depth from Eq. (6). Adding DD overly stack large Gaussians that led
to overly smoothed mean depth. Occupancy bias improves the placement of Gaussians but still struggles in low-reflectivity areas (e.g., bottom
left of the cart, and the pillow). Initializing Gaussians with low reflectivity mitigates this issue. Reintroducing the DD loss again after applying
the two heuristics still led to oversmooth depth due to Gaussians’ spatial extent.

13

GT C-ToF 2D Flowed TöRF [1] F-TöRF [22] DeformableGS [32] Ours

Sl
id

in
g

C
ub

e
O

cc
lu

de
d

C
ub

e
O

rt
ho

.S
T

A
rc

in
g

C
ub

e
A

xi
al

ST
3

C
ha

ir
sS

T
3

C
ub

es
ST

Figure 8. Results on all F-TöRF synthetic scenes. DeformableGS is given C-ToF-derived depth as an additional input.

14

C-ToF 2D Flowed TöRF [1] F-TöRF [22] DeformableGS [32] Ours

B
as

eb
al

l
P

ill
ow

Ju
m

pi
ng

Ja
ck

s
Ta

rg
et

Fa
n

Figure 9. Results on all F-TöRF real-world scenes. DeformableGS is given C-ToF-derived depth as an additional input.

15

Input Ours TöRF [1] DeformableGS [32] DeformableGS (–depth)

C
up

bo
ar

d
D

es
kb

ox
P

ho
to

co
pi

er
St

ud
yB

oo
k

Figure 10. More results on TöRF real-world scenes. DeformableGS is given C-ToF-derived depth as an additional input.

16

	Introduction
	C-ToF Imaging Principles
	C-ToF GS Image Formation
	Where the Problems Lie

	Pipeline
	Experiments
	Results

	Discussion
	Related Works
	Supplemental Video + Full Figures
	Ablations
	ToF Gradient Computation Details

